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Abstract

Central to certain versions of logical atomism is the claim that every
proposition is a truth-functional combination of elementary propositions.
Assuming that propositions form a Boolean algebra, we consider five nat-
ural formal regimentations of this informal claim, and show that they are
equivalent. For a number of reasons, such as the need to accommodate
quantifiers, logical atomists might consider only complete Boolean alge-
bras, and take into account infinite truth-functional combinations. We
show that in such a variant setting, the five regimentations come apart,
and explore how they relate to each other. We also discuss how they relate
to the claim that propositions form a double powerset algebra, which has
been proposed by a number of authors as a way of capturing the central
logical atomist idea.

Russell (1956 [1918], 1924/1956) and Wittgenstein (1921) defended versions
of logical atomism. It is not a straightforward matter to explain exactly what
logical atomism amounts to, in part because Russell’s and Wittgenstein’s views
changed over time, and differ in various ways from each other. One idea which
is central to many versions of logical atomism is the claim that there is a special
class of elementary propositions (sometimes also called atomic) from which all
others can be obtained. An especially strong and intriguing form of this claim
holds that every proposition can be obtained from elementary propositions using
truth-functional operations alone. That is:

(LA) Every proposition is a truth-functional combination of elementary propo-
sitions.

Wittgenstein (1921) articulated this idea explicitly in various passages (see 4.51,
5, 5.3, 5.32, 6.001). Russell may have held a version of it as well at some point,
but his most explicit developments of logical atomism in (Russell, 1956 [1918],
1924/1956) arguably contradict this strong principle LA.

In the following, we consider a range of ways of formally regimenting LA
and some related principles. The aim of this paper is systematic, rather than
historical. We therefore focus on exploring the various formalizations only from
a mathematical standpoint, and won’t consider to what extent various views are
plausibly ascribed to the primary sources on logical atomism. However, various
principles we will consider are closely related to claims explicitly formulated by
Wittgenstein (1921). For readers interested in such a comparison, we include
references to some of the relevant passages. For brevity, these will be noted by
writing, e.g., “LPA, 5.3” for “Wittgenstein (1921, 5.3)”.

1 Boolean Algebras

We work in an algebraic framework, assuming that propositions form a Boolean
algebra (cf. LPA, 4.465, 5.41). That is, propositions are objects and form a set,
and the truth-functional operations like negation and conjunction can be un-
derstood as functions on this set. Before stating the conditions which Boolean

1



algebras impose on these functions, we should note that the algebraic approach
is not our preferred way of regimenting talk of propositions. We prefer to use
higher-order quantifiers, in particular so-called propositional quantifiers, i.e.,
quantifiers binding variables in the position of sentences. For more on this, see
Fritz and Jones (2024), Fritz (2024), and Bacon (2024). We follow the alge-
braic approach here for a number of reasons. First, most existing discussions
of principles like LA, such as Skyrms (1993), are couched in algebraic terms.
Second, it is interesting to consider alternative approaches to formalization, to
understand the import of the choice of framework on the resulting views. Third,
the algebraic results here can be used in an instrumental capacity for investiga-
tions in terms of higher-order logic, since algebraic structures can be extended
in natural ways to models of higher-order logic.

Boolean algebras can be defined in a number of ways. For present purposes,
a natural way of doing so requires a Boolean algebra to be a structure ⟨A,−,∧⟩,
where A is a non-empty set, − is a function from A to A, and ∧ is a function
from A×A to A. We adopt the convention of denoting such an algebra using the
Gothic letter corresponding to the Roman letter used to denote the underlying
set. So, ⟨A,−,∧⟩ is denoted by A. When dealing with multiple algebras, we
sometimes disambiguate between the operations belonging to different algebras
by adding the algebra as an index, writing, e.g., −A and ∧A, and similarly with
various defined operations introduced below. In the present context, we can
think of A as the set of propositions. We can correspondingly think of − as
negation, which is identified with the function which maps every proposition to
its negation. Analogously, we can think of ∧ as conjunction, which maps any
pair of propositions to their conjunction.

⟨A,−,∧⟩ is a Boolean algebra just in case any two truth-conditionally equiv-
alent terms denote the same element. This requires some unpacking. First, from
terms “x”, “y”, “z”, . . . denoting elements of A, we can construct terms such
as “−x”, “x ∧ y”, and “(x ∧ y) ∧ −z”, using the symbols denoting the opera-
tions of the algebra and parentheses. Second, these terms can be understood as
formulas of propositional logic with primitive logical connectives for negation
and conjunction. Third, let two of these terms be truth-functionally equivalent
just in case they are provably equivalent in classical propositional logic. So, the
condition characterizing Boolean algebras given above requires x and −−x, for
example, to denote the same element, since x and −− x, understood as formu-
las of propositional logic, are classically equivalent. We can therefore think of
the assumption that propositions form a Boolean algebra as capturing the idea
that formulas which are provably equivalent in classical propositional logic ex-
press the same proposition. This assumption also justifies the omission of other
truth-functional operations, such as disjunction, in Boolean algebras. If truth-
functionally equivalent terms express the same proposition, then every term
truth-functionally equivalent to a disjunction denotes the same proposition as
the disjunction. For example, −(−x∧−y) can be assumed to be the disjunction
of x and y. Consequently, we can define, for any given Boolean algebra, a func-
tion ∨ mapping any x and y to −(−x∧−y), and similarly for the other Boolean
connectives such as → and ↔.

This definition of Boolean algebras effectively uses an infinite set of equa-
tions. Various of its finite subsets would suffice for the purposes of the definition,
but this won’t be important in the following; the details can be found in standard
textbooks dealing with Boolean algebras such as Davey and Priestley (2002),
Givant and Halmos (2009), and Koppelberg (1989).

What we will appeal to at various points is an order ≤ which can be asso-
ciated with every Boolean algebra ⟨A,−,∧⟩, by letting x ≤ y just in case x ∧ y
is x, for all x and y. ≤ is a partial order, which means that it is reflexive on
A, transitive, and antisymmetric. We will also appeal to a number of standard
notions concerning partial orders. First, to every partial order ≤, there corre-
sponds a strict order <, where x < y just in case x ≤ y and x ̸= y. Further, in a
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partial order, x is a lower bound of Y ⊆ A if x ≤ y for all y ∈ Y ; x is an upper
bound of Y if y ≤ x for all y ∈ Y . x is a greatest lower bound of Y if x is a lower
bound of Y and z ≤ x for every lower bound z of Y ; x is a least upper bound
of Y if x is an upper bound of Y and x ≤ z for every upper bound z of Y . In
a partial order, the greatest lower bound of a set Y , if it exists, is unique, and
denoted by

∧
Y ; correspondingly, the least upper bound of a set Y , if it exists,

is unique, and denoted by
∨
Y .

Let ⟨A,−,∧⟩ be a Boolean algebra, and ≤ the corresponding order. As the
notation suggests, if Y = {x, y}, then x ∧ y is

∧
Y , and x ∨ y is

∨
Y . This

means that every two-element set {x, y} has a greatest lower bound and a least
upper bound. A partial order satisfying this further constraint is called a lattice.
Furthermore, a lattice ≤ is bounded if there are elements ⊥ and ⊤ such that for
all x, ⊥ ≤ x ≤ ⊤. (⊥ and ⊤ are also called 0 and 1, respectively. Consequently,
an element is called non-zero if it is distinct from 0, i.e., ⊥.) If ≤ is the order
derived from a Boolean algebra, it is bounded: we can take ⊥ to be x ∧ −x,
and ⊤ to be x ∨ −x, for any x ∈ A. Finally, a bounded lattice is complemented
if every element x has a complement, i.e., an element y such that x ∧ y = ⊥
and x ∨ y = ⊤. If ≤ is the order derived from a Boolean algebra, it is also
complemented: every x ∈ A has a complement, namely −x.

Although this won’t be essential in the following – and so readers may skip
this paragraph without loss of continuity – it is worth noting that in a certain
sense, Boolean algebras can also be defined as certain partial orders. First, the
order ≤ associated with a given Boolean algebra satisfies one further property,
of being distributive, which requires that x∧ (y∨ z) is (x∧ y)∨ (x∧ z), for all x,
y, and z. So, such an order ≤ is always a complemented distributive lattice. In
such a lattice, complements are unique. Thus, we can recover − as the function
mapping every element to its complement, and ∧ as the function mapping any
set {x, y} to its greatest lower bounds. Thus, every Boolean algebra ⟨A,−,∧⟩
uniquely determines a complemented distributive lattice ≤, from which we can
recover all the components of the original Boolean algebra. Finally, whenever
≤ is a complemented distributive lattice, the underlying set A, together with
the complementation function − and greatest lower bound function ∧ form a
Boolean algebra. Along these lines, Boolean algebras as defined here correspond
bijectively to complemented distributive lattices. In this sense, Boolean algebras
could also be defined as complemented distributive lattices.

2 Regimenting LA

Assuming that the propositions form a Boolean algebra ⟨A,−,∧⟩, LA says that
the elementary propositions form a set E ⊆ A, from which every proposition
can be obtained using truth-functional combinations. Formalizing this claim
involves two choices: First, what algebraic conditions must elementary propo-
sitions satisfy? Second, what does it mean that every proposition is a truth-
functional combination of elementary propositions? We will consider two gen-
eral approaches to answering these questions. Formally, they will lead us to five
conditions on a subset E of a Boolean algebra.

2.1 Independent Generation

According to the first approach, the crucial feature of elementary propositions is
that they are logically independent (cf. LPA, 4.211, 4.27, 5.134, 6.3751). Infor-
mally, logical independence means that for any distinct elementary propositions
e1, . . . , en+m, it is consistent for e1, . . . , en to be true, and for en+1, . . . , en+m to
be false. That is, the conjunction of e1, . . . , en with the negations of en+1, . . . , en+m

is non-zero (i.e., distinct from 0). Algebraically, this is known as being indepen-
dent. A useful way of defining this is as follows (in the context of a given Boolean
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algebra, left implicit):

Definition 2.1. D is a finite description based on E, written D ◁ω E, if
D = T ∪ {−f : f ∈ F} for disjoint finite sets T, F ⊆ E. E is independent if∧
D > ⊥ for every D ◁ω E.

It is important to be clear that logical independence is not a way of character-
izing elementarity algebraically, since typically, there are multiple independent
sets whose union is not independent. In fact, this holds for every non-trivial
Boolean algebra, where a Boolean algebra is trivial if it has just one element.
Up to isomorphism, there is only one trivial Boolean algebra, which we call
1. For any other Boolean algebra, every element is distinct from its comple-
ment. Thus, for any element x, {x} and {−x} are distinct and independent, but
{x,−x} is not independent. Consequently, independence is only an algebraic
requirement of elementary, not a characterization of it.

Assuming an independent set E of elementary proposition, there is a straight-
forward way of making sense of the claim that every proposition is a truth-
functional combination of elements of E. We can define a sequence of sets
E0 ⊆ E1 ⊆ E2 ⊆ . . . , starting from E0 = E, where En+1 contains just the
negations and conjunctions of elements of En. We can then characterize the
propositions which can be obtained from elements of E using truth-functional
operations as the union of E0, E1, E2, . . . . More formally, we can define:

E0 := E

En+1 := {−x : x ∈ En} ∪ {y ∧ z : y, z ∈ En}

Eω :=
⋃
n∈N

En

To say that every proposition is a truth-functional combination of elements of
E is therefore naturally formalized by requiring Eω to contain every element of
A. In algebraic terminology, this requires E to generate A. It will be useful to
introduce an alternative way of stating this requirement, which is equivalent to
the one just stated. It uses the notion of a subalgebra. A subalgebra of a Boolean
algebra ⟨A,−,∧⟩ is a Boolean algebra based on a subset B of A, such that the
operations of the two algebras agree on the elements of B. A subalgebra B of
A is a proper subalgebra of A if it is distinct from A. Subalgebras are closed
under intersection: for any set S of subalgebras of a given algebra, the elements
contained in every member of S are closed under the operations, and so form
a subalgebra themselves. It follows that for a given set E ⊆ A, the subalgebras
which include E are closed under intersection, and so contain a smallest element.
This is the intersection of all subalgebras including E. It can be shown that its
underlying set is just Eω. We can therefore define:

Definition 2.2. E ⊆ A generates A if the smallest subalgebra of A including
E is A itself.

The first way of regimenting LA therefore requires the elementary proposi-
tions E to be independent and to generate the algebra of all propositions. We
introduce an obvious label for this notion:

Definition 2.3. E ⊆ A independently generates A if E is independent, and
generates A.

As in the case of independence, a set E ⊆ A which independently generates
A does not in general do so uniquely. We return to this point in more detail in
section 2.3 below.
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2.2 Free Generation

The second way of regimenting LA draws on another Tractarian idea, implicit
in Wittgenstein’s use of truth tables (cf. LPA, 4.442, 5.101). Here the idea that
the elementary propositions are logically independent of one another is spelled
out in terms of truth-value assignments: any way of assigning truth values to the
elementary propositions is coherent, in the sense that it extends to an assignment
of truth values to all propositions that is well-behaved with respect to the truth-
functional connectives; e.g., it maps a conjunction to true if and only if it maps
both conjuncts to true. The idea that every proposition can be made from the
elementary propositions using the truth-functional operations can be stated in
similar terms. For if any given proposition is a truth-functional combination
of elementary propositions, then its truth value is completely determined by
the truth-values of the elementary propositions. That is to say, there cannot be
two different ways of coherently extending an assignment of truth values to the
elementary propositions to all of the propositions.

The concepts appealed to here are reminiscent of the concept of a truth-value
assignment and valuation found in propositional logic, so we shall repurpose
those terms. First, note that up to isomorphism, there is a unique two-element
Boolean algebra, which we will call 2. As a model of propositions, we can think of
this as identifying propositions with truth values: the top element ⊤ is the truth
value true, and the bottom element ⊥ is the truth value false. The behaviour
of − and ∧ conforms to the classical truth tables for negation and conjunction.
For mathematical convenience, we identify ⊥ with 0 and ⊤ with 1; by the von
Neumann definition of ordinals, it follows that 2 = {0, 1} = {⊥,⊤}. A truth-
value assignment is then a mapping f : E → 2. A valuation is a mapping
v : A → 2 which respects the truth-functional operations, i.e., such that for all
x, y, z ∈ A:

(i) v(−Ax) = −2v(x), and

(ii) v(y ∧A z) = v(y) ∧2 v(z).

We say a valuation v extends f when v(x) = f(x) for all x ∈ E.

Definition 2.4. E ⊆ A freely generates A with respect to valuations if every
truth-value assignment f : E → 2 extends to a unique valuation f̂ : A→ 2.

Observe that being freely generated with respect to valuations imposes a
non-trivial condition on the granularity of propositions. Propositions must be
fine-grained enough to support a well-defined notion of evaluating the truth-
value of a proposition in terms of the truth-values of its elementary components.
This seems to require propositions at least be structured enough to have a
well-defined notion of elementary component. (We can recover the notion of x
being definable from a set of elementary propositions X by saying that any two
valuations agreeing on every element of X agree on x. When there is a minimal
such X we can talk of X being the set of elementary components of x.) Not
every Boolean algebra is like this – for instance, we will shortly see that no eight
element Boolean algebra is freely generated with respect to valuations by any
set of its elements.

The Tractarian picture of propositions as built up from elementary propo-
sitions suggests that a wider class of structure-sensitive operations should be
well-defined. Consider, now, the operation of taking a proposition – thought of
as a truth-functional combination of elementary propositions – and uniformly re-
placing each elementary constituent with other propositions. This is the “meta-
physical” analogue of the operation of substituting the letters of a propositional
formula with other formulas, so we might similarly repurpose the word “sub-
stitution”. If this notion is well-defined, then any function f : E → A mapping
elementary propositions to propositions should extend uniquely to a substitution
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f̂ : A → A that informally may be thought of as taking a proposition x ∈ A
and replacing the elementary components according to f , leaving the truth-
functional operations in place. It is clear, given this informal idea of leaving the
truth-functional operations “in place”, that substitutions should commute with
the truth-functional connectives, i.e., such that for all x, y, z ∈ A:

(i) f(−x) = −f(x), and

(ii) f(y ∧ z) = f(y) ∧ f(z).

We take these equations as our definition of a substitution. The extendability
of functions from E to A to unique substitutions seems, intuitively, to subsume
the previous condition: truth-value assignments can be identified with functions
f : A→ A that only take on two values, ⊤ and ⊥.

Definition 2.5. E ⊆ A freely generates A with respect to substitutions if every
function f : E → A extends to a unique substitution f̂ : A→ A.

Clearly there is a generalization here to be made. For this, we need another
algebraic concept. A homomorphism f : A → B between two Boolean algebras
A = ⟨A,−A,∧A⟩ and B = ⟨B,−B,∧B⟩ is a function f : A → B such that for
all x, y, z ∈ A:

(i) f(−Ax) = −Bf(x), and

(ii) f(y ∧A z) = f(y) ∧B f(z).

We can now introduce a more general notion of free generation for a given
Boolean algebra A. The more general notion is parametric in two dimensions.
The first parameter T is a class of algebras. This parameter delineates the
algebras which may serve as targets for the functions on elementary propositions
which must be uniquely extendable. The second parameter C consists of a class
of Boolean algebras (containing A and the algebras in C) along with a class of
homomorphisms among these algebras. This parameter imposes constraints on
the homomorphism f̂ to which a given function f on the elementary propositions
must be uniquely extendable. (It would be natural to let C be a category, in the
sense of Mac Lane (1998). For our purposes, the additional constraints imposed
by categories won’t be important, so there is no need to go into the details of
such a more rigorous formulation.) Relative to these two parameters, we define:

Definition 2.6. E ⊆ A ⟨T,C⟩-freely generates A if any function f from E to

the elements of a Boolean algebra B in T has a unique extension f̂ which is a
homomorphism in C from A to B.

In this more general notion, free generation with respect to valuations is
⟨2,BA⟩-free generation; here, we indicate the singleton class {2} using its single
element 2 for brevity, and we let BA be the class of Boolean algebras with
their homomorphisms. Similarly, free generation with respect to substitutions
is ⟨A,BA⟩-free generation. The latter requires that any function f : E → A has

a unique extension f̂ which is a homomorphism from A to A; this is also known
as an endomorphism on A. (An endomorphism on A which is also a bijection,
i.e., an isomorphism from A to A, is know as an automorphism of A.)

We will also consider two further instances of ⟨T,C⟩-free generation. In our
terminology, the strongest notion of free generation in this context – the notion
usually used in the theory of Boolean algebras – is the notion of ⟨BA,BA⟩-free
generation. Unpacking the definition, E ⊆ A ⟨BA,BA⟩-freely generates A when
any function f : E → B, where B is the underlying set of another Boolean
algebra B, extends to a unique homorophism f̂ : A → B. Intuitively, this cor-
responds to the idea that the operation of “replacing” elementary propositions
with elements of an arbitrary Boolean algebra is well-defined. The second no-
tion is a more modest attempt to strengthen free generation with respect to

6



substitutions. This is ⟨sub(A),BA⟩-free generation, where sub(A) is the class of
subalgebras of A. This condition takes us beyond free generation with respect
to substitutions since it requires that if you have a function f : E → A, the
range of its extension f̂ must be included in the subalgebra of A generated by
the range of f .

2.3 Equivalence

We now have five ways of capturing LA: independent generation and ⟨T,BA⟩-
free generation, for T being 2, A, sub(A), or BA. How do they relate? It turns
out that they are all equivalent, at least on non-trivial algebras. Indeed, we can
show a more general result, which is that independent generation is equivalent,
among non-trivial algebras, to ⟨T,BA⟩-free generation, for every class of Boolean
algebras T which contains some non-trivial Boolean algebra. The proof makes
use of an algebraic concept which has not been introduced so far. An ultrafilter
of a Boolean algebra ⟨A,−,∧⟩ is set U ⊆ A such that −x ∈ U iff x /∈ U , and
y ∧ z ∈ U iff y ∈ U and z ∈ U , for all x, y, z ∈ A. This means that a set U ⊆ A
is an ultrafilter just in case its characteristic function, mapping every element
of U to ⊤ and every other element of A to ⊥, is a homomorphism from A to 2.

Proposition 2.7. Let A = ⟨A,−,∧⟩ be a non-trivial Boolean algebra, E ⊆ A,
and T a class of Boolean algebras containing a non-trivial Boolean algebra. Then
E independently generates A if and only if E ⟨T,BA⟩-freely generates A.

Proof. Assume first that E independently generates A. As noted in Koppelberg
(1989, Proposition 9.4), it follows that E ⟨BA,BA⟩-freely generates A. That E
⟨T,BA⟩-freely generates A follows immediately from this.

So, assume now that E ⟨T,BA⟩-freely generates A. By assumption, T con-
tains a non-trivial Boolean B. To show that E is independent, consider any
D ◁ω E. Define a function f : E → B such that f(d) = ⊤ if d ∈ D, and

f(d) = ⊥ otherwise. Since f̂ is a homomorphism, f̂(
∧
D) = ⊤, whence

∧
D > ⊥

as A and B are non-trivial.
To show that E generates A, assume otherwise for contradiction. Then A

has a proper subalgebra A0 including E. Consequently, as noted by Givant
and Halmos (2009, ch. 20, ex. 15), there exists an ultrafilter U0 of A0 which is
extended by distinct ultrafilters U1, U2 of A. Define f0 : E → {⊥,⊤} such that
f0(e) = ⊤ iff e ∈ U0. Let f1, f2 : A0 → {⊥,⊤} such that fi(b) = ⊤ iff b ∈ Ui,
for i ∈ {1, 2}. Then f1 and f2 are distinct homomorphisms extending f0, in
contradiction with E ⟨T,BA⟩-freely generating A.

What about the trivial Boolean algebra 1, based on the one-element set
1 = {0}? It is easy to see that no subset of 1 independently, ⟨BA,BA⟩-freely, or
⟨2,BA⟩-freely generates 1. In contrast, both ∅ and 1 ⟨1,BA⟩-freely (and hence
⟨sub(1),BA⟩-freely) generate 1. However, for present philosophical purposes,
this divergence is relatively uninteresting, simply because the trivial Boolean
algebra 1 is not a credible model of the algebra of propositions: there is surely
at least one truth and at least one falsehood, and so more than one proposition.

Returning to non-trivial algebras, what kinds of pairs E and A satisfy in-
dependent generation (and so, equivalently, the various notions of free gener-
ation)? First, if E independently generates A, then it does so uniquely, up to
isomorphism, in the following sense: if E and E′ independently generate A and
A′, respectively, and E and E′ have the same cardinality, then any bijection
between E and E′ has a unique extension to an isomorphism between A and
A′. Second, any set E independently generates some Boolean algebra A. Up
to isomorphism, we may therefore speak of the Boolean algebra which is in-
dependently generated by a set of a given cardinality κ. (For a more detailed
discussion of these and the following observations, see Givant and Halmos (2009,
ch. 28).)
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To describe independently generated Boolean algebras in more detail, it is
useful to distinguish two cases, depending on whether E is finite or infinite. We
begin with the finite case. The powerset P(W ) is the set of subsets of a given
set W . This forms a Boolean algebra when we add the operations of relative
complement and intersection (mapping any X ⊆W toW\X and any Y, Z ⊆W
to Y ∩Z, respectively). We write P(W ) for this algebra.W itself can be taken to
be a powerset P(S), which gives us the double powerset algebra PP(S), whose
members are sets of subsets of S. For any s ∈ S, let s∗ = {w ⊆ S : s ∈ w}. It
can be shown that ΓS = {s∗ : s ∈ S} independently generates PP(S). (We will
see an intuitive explanation of this observation in section 3.3.) We call ΓS the
set of canonical generators of PP(S). Further, the function mapping any s to s∗

is a bijection from S to ΓS , whence S and ΓS have the same cardinality. Thus,
any finite set E independently generates a Boolean algebra which is isomorphic
to PP(E). So, a finite Boolean algebra is independently generated just in case
it is isomorphic to a double powerset algebra.

Consider now the infinite case. One way of generating infinite independently
generated Boolean algebras uses a technique commonly employed in logic. Take
the language of classical propositional logic, based on a set of proposition letters
of some infinite cardinality κ. Quotient this set by provable equivalence: let A
be the set of equivalence classes [φ] of formulas φ under the relation of provable
equivalence in classical propositional logic. This relation of provable equivalence
is not only an equivalence relation, but a congruence with respect to the connec-
tives: if φ,ψ, χ are provably equivalent to φ′, ψ′, χ′, respectively, then ¬φ and
ψ∧χ are also provably equivalent to ¬φ′ and ψ′∧χ′, respectively. Consequently,
there is a function − which maps [φ] to [¬φ], and a function ∧ which maps [ψ]
and [χ] to [ψ ∧ χ], for all formulas φ,ψ, χ. Aκ = ⟨A,−,∧⟩ is a Boolean algebra,
known as the Lindenbaum-Tarski algebra (of cardinality κ). Aκ can be shown
to be independently generated by the set E of equivalence classes of proposition
letters. No two proposition letters are provably equivalent, so |E| = κ. Thus, an
infinite Boolean algebras is independently generated just in case it is isomorphic
to a Lindenbaum-Tarski algebra.

The finite and infinite cases of independently generated Boolean algebras
differ sharply in their structural properties. We will shortly see some concrete
examples of this, in the form of the properties of atomicity and completeness, in-
troduced below, which finite independently generated Boolean algebras possess
but infinite independently generated Boolean algebras lack. A more straight-
forward observation concerns the relative cardinalities of E and A: assuming E

independently generates A, if E is finite, then |A| = 22
|E|

> |E|, whereas if E is
infinite, then |A| = |E|.

Finally, it is worth illustrating that a set which independently generates a
Boolean algebra does not do so uniquely (even though it does so uniquely up to
isomorphism). Consider first the finite case, of a double powerset algebra PP(S)
based on a finite set S. Any permutation f of P(S) induces an automorphism
f̄ of PP(S), where f̄(x) = {f(w) : w ∈ x}. Thus, for any such permutation
f , the set {f̄(x) : x ∈ ΓS} independently generates PP(S). To make this more
concrete, let S be the two-element set 2 = {0, 1}. Then the canonical generators
form the following set Γ2 = {0∗, 1∗}:

{{{0}, {0, 1}}, {{1}, {0, 1}}}

As our permutation f of P(2) = {∅, {0}, {1}, {0, 1}}, let us choose the transpo-
sition of ∅ and {0}, which maps these two elements to each other, and the other
two elements to themselves. Then f̄ maps the elements of Γ2 to the elements of
the following set, which therefore also independently generates PP(S):

{{∅, {0, 1}}, {{1}, {0, 1}}}

Similarly, in the case of a Lindenbaum-Tarski algebra, the equivalence classes of
proposition letters are not unique as independent generators. A simple example
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of a distinct set of independent generators is the set of equivalence classes of
negations of proposition letters.

3 Complete Boolean Algebras

The equivalence of the five conditions discussed so far suggests that they do well
in capturing LA. This coheres with some accounts in the literature, for example
Bell and Demopoulos (1996), who operate with the condition of independent
generation. However, in the following, we will consider a more restricted class
of Boolean algebras, and strengthened versions of the five conditions. We begin
with one possible way of motivating these restrictions.

3.1 Quantification

Logical atomists have to find a way of accommodating quantification. If there
are finitely many individuals, this is easily done using conjunction and disjunc-
tion. For example, the proposition that everything is F can be identified with
the conjunction of propositions Fx, for every individual x (cf. LPA, 5.52). Ex-
istential quantification can be treated analogously, using disjunction. However,
if there are infinitely many individuals, this idea will not obviously work, since
Boolean algebras only provide finitary truth-functional operations.

One way of accommodating quantification is therefore to provide infinitary
analogs of conjunction and disjunction. This can be done by assuming the alge-
bra of propositions to be complete. A Boolean algebra is complete if every set X
of elements has a greatest lower bound

∧
X and a least upper bound

∨
X. Just

as the greatest lower bound of two elements x ∧ y can be understood as their
conjunction, the greatest lower bound of a set of elements

∧
X can be under-

stood as their (possibly infinite) conjunction. The same applies to disjunction
and least upper bounds.

The need to accommodate quantifiers therefore motivates capturing LA us-
ing only complete Boolean algebras. Further, the availability of potentially in-
finitary truth-functional operations suggests adapting the five conditions dis-
cussed above, taking into account not just the binary operation ∧, but the more
general operation

∧
on sets. (

∨
can be defined in terms of − and

∧
, just as ∨

can be defined in terms of − and ∧.)

3.2 Regimentations, Revised

Let us therefore revisit the regimentations of LA discussed above in the setting of
complete Boolean algebras. First, we adjust the definition of finite descriptions
to take into account the possibility of conjoining arbitrary sets of propositions.
This allows us to consider complete descriptions, which decide, for each ele-
mentary proposition, whether to include it or its negation. This gives rise to a
notion of a set being completely independent:

Definition 3.1. D is a complete description based on E, written D ◁ E, if
D = T ∪ {−f : f ∈ F} for disjoint sets T, F ⊆ E such that T ∪ F = E. E is
completely independent if

∧
D > ⊥ for every D ◁ E.

We adapt the notion of a subalgebra as follows: ⟨B,−′,∧′⟩ is a complete
subalgebra of a complete Boolean algebra ⟨A,−,∧⟩ if it is a subalgebra of A
which preserves greatest lower bounds (and therefore least upper bounds), in
the following sense: for any X ⊆ B, the greatest lower bound of X in B is the
greatest lower bound in A. This gives us a complete notion of generation:

Definition 3.2. E ⊆ A completely generates A if the smallest complete subal-
gebra of A including E is A itself.
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With this, we can adapt the notion of independent generation by defining,
for any complete Boolean algebra A:

Definition 3.3. E ⊆ A completely independently generates A if E is com-
pletely independent, and completely generates A.

Moving on to the other notions of free generation, let a complete homomor-
phism from ⟨A,−,∧⟩ to ⟨B,−′,∧′⟩ (both complete Boolean algebras) be a ho-
momorphism f which preserves greatest lower bounds (and therefore least upper
bounds), in the following sense: for any X ⊆ A, f maps the greatest lower bound
of X in A to the greatest lower bound of {f(x) : x ∈ X} in B. (Correspondingly,
a complete endomorphism on an algebra A is a complete homomorphism from
A to A.) With this, let CBA be the class of complete Boolean algebras along
with the class of complete homomorphisms among complete Boolean algebras.

We can now instantiate the notion of ⟨T,C⟩-free generation by letting C be
CBA, and T be one of the four relevant classes of complete Boolean algebras. So,
we will be interested in ⟨2,CBA⟩-free, ⟨A,CBA⟩-free, ⟨csub(A),CBA⟩-free, and
⟨CBA,CBA⟩-free generation, where csub(A) is the class of complete subalgebras
of A.

We will aim to characterize these conditions in more direct, structural terms,
and to delineate how they relate to each other. We have been able to provide
structural characterizations of three of the five conditions: complete independent
generation, ⟨2,CBA⟩-free generation, and ⟨CBA,CBA⟩-free generation. These
will be presented in section 4. The remaining two conditions of ⟨A,CBA⟩-free
generation and ⟨csub(A),CBA⟩-free generation are more difficult to understand,
and we have only been able to describe partially how the relate to each other and
the other three notions. The relevant results will be discussed in section 5. Before
delving into these mathematical questions, it is worth mentioning a closely re-
lated way of regimenting logical atomist ideas, which also uses certain complete
Boolean algebras.

3.3 Possible Worlds

In the literature on logical atomism, some authors have also adopted (complete)
Boolean algebras, but imposed a condition which is at least apparently differ-
ent from those considered above. In particular, Suszko (1968), Moss (2012),
and Button (2017) effectively suggest modeling the logical atomist account of
propositions using double powerset algebras, as defined above. Somewhat less
explicitly, one may also find this understanding of logical atomism in Ramsey
(1923, 1927).

Why double powerset algebras? First, powerset algebras provide very natural
models of propositions, using the ideas of possible world semantics. Think of a
setW as the set of possible worlds, and assume that the propositions are the sets
of possible worlds, identifying any proposition with the set of possible worlds
in which it is true (cf. LPA, 4.2, 4.4, 4.431). Since a proposition is true in a
world just in case its negation is not true there, relative complement serves
as the operation of negation. Similarly, a conjunctive proposition is true in a
world just in case its conjuncts are true in this world; consequently, intersection
serves as the operation of conjunction. Thus, on this picture, we can identify
the propositional algebra with the powerset algebra P(W ).

Second, from this perspective of possible world semantics, it is a natural
to capture LA by letting the elementary propositions determine the possible
worlds. That is, taking elementary propositions again to be logically indepen-
dent, it is natural to think that for any set of elementary propositions X, there
is a possible world in which every member of X is true, and every elementary
proposition not in X is false. Further, since all propositions are truth-functional
combinations of elementary propositions, the truth of every proposition should
be determined by the truth and falsity of elementary propositions. Thus, there
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should only be one world in which every member of X is true and every elemen-
tary proposition not in X is false. Consequently, we should be able to identify
every possible world with the set of elementary propositions true in it; more
generally, we should be able to identify the possible worlds W with the sets of
elementary propositions (cf. LPA, 4.27, 4.28, 4.45).

Putting these ideas together, we arrive at double powerset algebras. To be
precise, we have to be a bit careful about the status of elementary propositions.
By way of example, consider an elementary proposition e ∈ E. The informal
ideas sketched above suggested that the set of worlds in which e is true is
e∗ = {w ⊆ E : e ∈ w}. Since e is a proposition, it has to be the set of worlds in
which it is true, and so e = e∗. But e ∈ {e} ∈ e∗, whence e ̸= e∗. Therefore, we
should strictly speaking start from a set of, say, elementary states S, with the set
of worldsW = P(S). Each state s then corresponding uniquely to an elementary
proposition s∗ = {w ⊆ S : s ∈ w}, the proposition that state s obtains. We thus
arrive at the elementary propositions forming the set E = {s∗ : s ∈ S} of
elements of the double powerset algebra of propositions PP(S).

Among finite algebras, we have seen above that this regimentation of logical
atomism (relying on the possible worlds account of propositions) fits exactly the
condition of independent generation and its equivalent formulations in terms of
different kinds of free generation, at least up to isomorphism. However, among
infinite algebras, it diverges sharply from these conditions, since no infinite pow-
erset algebra is independently generated. This follows from the fact that infinite
independently generated Boolean algebras are incomplete, while all powerset
algebras are complete, with intersections and disjunctions serving as greatest
lower bounds and least upper bounds.

The divergence can also be shown by considering the atoms of algebras. An
atom of a Boolean algebra A is a non-zero element a for which there is no
x such that ⊥ < x < a. A is atomless if it has no atoms, and atomic if for
every non-zero element x, there is some atom a ≤ x. Every powerset algebra is
atomic, with the singleton sets serving as atoms. Indeed, a Boolean algebra is
isomorphic to a powerset algebra if and only if it is both complete and atomic.
In contrast, every infinite free Boolean algebra is not only incomplete but also
atomless.

Intuitively, it is not that surprising that the double powerset condition comes
apart so decisively from the conditions formulated above. The reason is that in
the double powerset condition, possible worlds are essentially generated from
elementary propositions by taking conjunctions of elementary propositions and
their negations. If there are infinitely many elementary propositions, then these
conjunctions have to be infinite. As noted, Boolean algebras which are not
complete will not in general provide such an infinitary operation of conjunction.
Even if the algebra under consideration is complete, the conditions formulated
above do not take into account any infinitary truth-functional operations.

These observations suggest an intriguing possibility: Could it be that inde-
pendent generation and its variant definitions in terms of free generation come
to match the double powerset condition when they are adjusted to accommo-
date infinitary operations? We will see below that this is not the case, although
some of the conditions come close. In general, we will see that the mathematical
situation becomes much more complicated once we move to complete Boolean
algebras in the way sketched here. Starting to explore this territory will be the
main task for the rest of this paper. In the following, results concerning E and A
assume implicitly that E is a set of elements of a non-trivial complete Boolean
algebra A.
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4 Structural Characterizations

The following three sections provide structural characterizations of ⟨CBA,CBA⟩-
free generation, ⟨2,CBA⟩-free generation, and complete independent generation,
respectively.

4.1 ⟨CBA,CBA⟩-Free Generation

We begin with ⟨CBA,CBA⟩-free generation, since it can be characterized using
a very simple condition. The complete Boolean algebras which are ⟨CBA,CBA⟩-
freely generated are just the finite double powerset algebras. To state this more
carefully, we write again e∗ for {w ⊆ E : e ∈ w}, where e is an element of a
contextually salient set E, and we continue to use this notation in the following.

Theorem 4.1. E ⟨CBA,CBA⟩-freely generates A just in case E is finite and
there is an isomorphism f from A to PP(E) such that f(e) = e∗ for all e ∈ E.

Proof. Among finite algebras, ⟨CBA,CBA⟩-free generation coincides with ⟨BA,BA⟩-
free generation, i.e., independent generation. So, in these cases, the claim follows
from the characterization of independent generation in section 2.3. It remains
to show that if A is infinite, it is not ⟨CBA,CBA⟩-freely generated by any set E.
This follows from a result of Gaifman (1964) and Hales (1964), who show that
for every cardinality κ, there is a complete Boolean algebra of size > κ which
is completely generated by a countable set. (An elegant proof was provided by
Solovay (1966); see also Koppelberg (1989, p. 191, Corollary 13.2).) The re-
quired corollary of the Gaifman-Hales result is straightforward and well-known
– see the title of Hales (1964) – but since it is central for this paper, we spell
out the argument:

Assume for contradiction that A is infinite, and ⟨CBA,CBA⟩-freely generated
by E. Along the lines of the proof of Proposition 2.7, is easy to see that E must
be infinite, since the subalgebra (completely) generated by any finite set is
finite. By the result of Gaifman and Hales, there is a complete Boolean algebra
B which is completely generated by a countable set G, while being of greater
cardinality than A. Since E is infinite, there is a surjective function f : E → G.
By ⟨CBA,CBA⟩-free generation, f can be extended to a complete homomorphism

f̂ from A to B. Since f̂ is surjective on G, and G completely generates B, it
follows by a transfinite induction that f̂ is also surjective on B. But this is
impossible, since B is of larger cardinality than A.

⟨CBA,CBA⟩-free generation is thus inconsistent with the existence of an in-
finity of propositions, and so is implausible insofar as it is plausible that there
are infinitely many propositions (cf. LPA, 4.2211). The Gaifman-Hales theorem
also sheds some light on the notion of complete generation: If A is generated
by E, then every element of A can be obtained from E by a finite sequence of
applications of − and ∧ to the members of E. If A is completely generated by E,
then to construct an arbitrary member of A, we may have to use applications
of

∧
to infinite sets. However, one might naturally wonder whether we may also

need to iterate the applications of − and
∧

an infinite number of times. That
this is the case follows from Gaifman-Hales. To make this precise, we define,
analogous to section 2.1:

E∞
0 := E

E∞
n+1 := {−x : x ∈ E∞

n } ∪ {
∧
Y : Y ⊆ E∞

n }

E∞
ω :=

⋃
n∈N

E∞
n

By construction, the cardinality of E∞
ω cannot be greater than ℶω = sup{ℵ0, 2

ℵ0 , 22
ℵ0
, . . . }.

By Gaifman-Hales, A may be generated by a countable set G, but be of larger
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cardinality than ℶω. The construction of generated elements may therefore have
to be iterated into the transfinite (see the proof of Lemma 4.5). Of course, this
is a consequence of the fact that only − and

∧
are treated as primitive here. If

in constructing elements of complete Boolean algebras we allowed also
∨

and
all the other possible operations in complete Boolean algebras, every element of
A could trivially be constructed from G in just one step (cf. LPA, 5.3, 5.32).

4.2 ⟨2,CBA⟩-free Generation

For much of the following, we need two more basic notions for Boolean algebras,
namely relativization and product. First, let ⟨A,−,∧⟩ be a Boolean algebra,
and r ∈ A. The relativization of A to r is the Boolean algebra ⟨B,−′,∧′⟩ where
B = {y ∈ A : y ≤ r}, −′x = r ∧ −x, and y ∧′ z = y ∧ z, for all x, y, z ∈ B.
Second, if ⟨A,−A,∧A⟩ and ⟨B,−B,∧B⟩ are Boolean algebras, then A×B, the
product of A and B, is the Boolean algebra ⟨A × B,−A×B,∧A×B⟩ such that,
for all x, y, z ∈ A and x′, y′, z′ ∈ B:

−A×B⟨x, x′⟩ = ⟨−Ax,−Bx
′⟩

⟨y, y′⟩ ∧A×B ⟨z, z′⟩ = ⟨y ∧A y
′, z ∧B z′⟩

For brevity, we will often use − and ∧ for the two operations of any Boolean
algebra, letting context disambiguate to which algebra the relevant operation
belongs.

In the following, we will rely on a basic observation about products of com-
plete Boolean algebras, namely that any complete Boolean algebra A is iso-
morphic to a product B × C of a complete atomless Boolean algebra B and a
complete atomic Boolean algebra C. More specifically, let x be the least upper
bound of the set of atoms in A. Let B be the relativization of A to −x, and C
the relativization of A to x. Then B is complete and atomless, C is complete and
atomic, and A is isomorphic to B × C. (See Givant and Halmos (2009, p. 227,
Corollary 2). To see why this observation applies in particular to atomic and
atomless Boolean algebras, note that the trivial (one-element) Boolean algebra
1 is both atomic and atomless.)

We first note that double powerset algebras are ⟨2,CBA⟩-freely generated by
their canonical generators, in the finite as well as in the infinite case. Indeed,
we can expand this observation to any product of a complete atomless Boolean
algebra with a double powerset algebra, turning each canonical generator of the
double powerset algebra into a generator of the product algebra by adjoining an
arbitrary element of the atomless algebra. The proof of this observation appeals
to another basic notion and observation which will remain important in the
following: An ultrafilter U is principal if it has a least element, i.e., if

∧
U ∈ U .

Equivalently, a set U ⊆ A is a principal ultrafilter just in case its characteristic
function (mapping every element of U to ⊤ and every other element of A to ⊥) is
a complete homomorphism from A to 2. Furthermore, the principal ultrafilters of
a Boolean algebra correspond uniquely to the atoms of the algebra; in particular,
if U is a principal ultrafilter, then

∧
U is the corresponding atom, and if a is an

atom, then {x : x ≥ a} is the corresponding principal ultrafilter.

Lemma 4.2. For any complete atomless Boolean algebra B, set S, and function
β : S → B, A = B × PP(S) is ⟨2,CBA⟩-freely generated by E = {⟨β(s), s∗⟩ :
s ∈ S}.

Proof. Consider any function f : E → 2. Let Σ = {s ∈ S : f(⟨β(s), s∗⟩) = 1}.
Define f̂ : A→ 2 such that:

f̂(⟨b, c⟩) = 1 iff Σ ∈ c

It is straightforward to verify that f̂ is a complete homomorphism extending f .
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For uniqueness, consider any complete homomorphism g extending f . Since g
is a complete homomorphism, the set U ⊆ A of elements mapped by g to 1 forms
a principal ultrafilter. Thus, g maps the atom a =

∧
U to 1. By construction

of A, a must be identical to ⟨⊥B, {w}⟩, for some w ⊆ S. We show that w = Σ.
Consider any s ∈ S: f(⟨β(s), s∗⟩) = 1 iff ⟨β(s), s∗⟩ ∈ U iff ⟨⊥B, {w}⟩ ≤A

⟨β(s), s∗⟩ iff {w} ⊆ s∗ iff w ∈ s∗ iff s ∈ w. Thus w = Σ. With this, it follows

that f̂(⟨b, c⟩) = 1 iff w ∈ c iff ⟨⊥B, {w}⟩ ≤ ⟨b, c⟩ iff ⟨b, c⟩ ∈ U iff g(⟨b, c⟩) = 1.

So f̂ = g.

Next, we note that up to isomorphism, these are the only examples of
⟨2,CBA⟩-free generation. To state this result, we assume the convention of writ-
ing πi for the i-th projection function, which maps any n-tuple with n ≥ i to
its ith coordinate. E.g., π2(⟨x, y⟩) = y.

Lemma 4.3. If E ⟨2,CBA⟩-freely generates A, then there is a complete atomless
Boolean algebra B and an isomorphism f from A to B × PP(E) such that
π2f(e) = e∗ for all e ∈ E.

Proof. Assume E ⟨2,CBA⟩-freely generates A. Let c be the least upper bound of
the set of atoms of A, b = −c, andB the relativization of A to b. As noted above,
B is complete and atomless. For every w ⊆ E, let Dw = w ∪ {−e : e ∈ E\w}.
Define a function f on A such that for all x ∈ A:

f(x) = ⟨x ∧ b, {w ⊆ E :
∧
Dw ∧ c ≤ x}⟩

We show that B and f witness the claim.
First, we show that for every w ⊆ E,

∧
Dw ∧ c is an atom of A. Let g

be the characteristic function of w, mapping any e ∈ w to 1 and e ∈ E\w
to 0. By ⟨2,CBA⟩-free generation, g has a unique extension ĝ to a complete
homomorphism from A to 2. Let U be the corresponding ultrafilter, the set
of elements mapped by ĝ to 1. Since ĝ is complete, U is principal, whence
a =

∧
U is an atom. Further, g(x) = 1 for all x ∈ Dw, and so ĝ(

∧
Dw) = 1.

Thus, a ≤
∧
Dw, and so a ≤

∧
Dw ∧ c. We show that a =

∧
Dw ∧ c. Assume

otherwise for contradiction. Then there is another atom a′ ≤
∧
Dw ∧ c, and

so a corresponding principal ultrafilter U ′ = {x ∈ A : a′ ≤ x}. Let h be the
characteristic function of U ′, mapping every x ∈ U ′ to 1 and x ∈ A\U ′ to 0.
Then h is a complete homomorphism from A to 2. Further, since a′ ≤

∧
Dw,

Dw ⊆ U ′, so h extends g. Thus h contradicts the uniqueness of ĝ.
With this observation, it is straightforward to verify that f is a homomor-

phism. To establish that f is surjective, it suffices to show that any ⟨x, y⟩ ∈
B × PP(E) is the image of x ∨

∨
w∈y

∧
Dw under f , which is routine. To es-

tablish that f is injective, consider any distinct members x and y of A. Then
either x ∧ b ̸= y ∧ b or x ∧ c ̸= y ∧ c. In the former case, it is immediate that
π1f(x) ̸= π1f(y). In the latter case, we may assume without loss of generality
that there is an atom a ≤ x such that a ≰ y. Let w = {e ∈ E : a ≤ e}. As
established above,

∧
Dw∧c is an atom, and so

∧
Dw∧c = a. Thus

∧
Dw∧c ≰ y.

Thus, w witnesses π2f(x) ̸= π2f(y). So, in either case, f(x) ̸= f(y).
Finally, consider any e ∈ E, with a view to establishing π2f(e) = e∗. Let

w ⊆ E; it suffices to show that
∧
Dw ∧ c ≤ w iff w ∈ e∗, i.e., iff e ∈ w. If e ∈ w,

the claim is immediate. Otherwise, −e ∈ Dw. As shown above,
∧
Dw ∧ c is an

atom, and so non-zero; thus,
∧
Dw ∧ c ≰ e, as required.

Putting these two lemmas together, we obtain the following characterization
of ⟨2,CBA⟩-free generation:

Theorem 4.4. E ⟨2,CBA⟩-freely generates A just in case there is a complete
atomless Boolean algebra B and an isomorphism f from A to B×PP(E) such
that π2f(e) = e∗ for all e ∈ E.
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Proof. The left to right direction is established in Lemma 4.3. The right to left
direction follows from Lemma 4.2 and the fact that ⟨2,CBA⟩-free generation is
invariant under isomorphism.

4.3 Complete Independent Generation

To characterize complete independent generation, we begin with a basic ob-
servation on complete descriptions based on complete generators of complete
algebras. The observation is based on the fact that as in the finite case, we can
characterize the smallest complete subalgebra of a given algebra containing a
starting set of elements as the result of successively closing the starting set under
complementation and greatest lower bounds, now admitting arbitrary greatest
lower bounds and iterating the construction into the transfinite:

Lemma 4.5. Let A be a complete Boolean algebra which is completely generated
by a set G ⊆ A, and D ◁ A. Then

∧
D ≤ x or

∧
D ≤ −x for all x ∈ A.

Proof. For every ordinal α, define a set Gα ⊆ A as follows:

G0 := G

Gα+1 := {−x : x ∈ Gα} ∪ {
∧
X : X ⊆ Gα}

Gλ :=
⋃
α<λ

Gα (λ a limit ordinal)

By cardinality considerations, there is some ordinal α at which Gα reaches a
fixed point. This set is closed under the two operations, and so a complete
subalgebra, which means that A = Gα. It thus suffices to show by a transfinite
induction that for every ordinal α and x ∈ Gα,

∧
D ≤ x or

∧
D ≤ −x, which

is routine.

We can now characterize complete independent generation in very similar
terms to those just used to characterize ⟨2,CBA⟩-free generation. First, we can
again show that a product of a complete atomless Boolean algebra B with a
double powerset algebra PP(S) is completely independently generated, with
one additional cardinality constraint: the atomless factor B must be generated
by a set G which is no larger than the base set S on which the double powerset
algebra is constructed. To produce the witnessing set E of completely indepen-
dent complete generators, we just need to adjoin to every canonical generator
s∗ of the double powerset algebra an element β(s) of G, ensuring that the image
of S under β contains each element of G. In other words:

Lemma 4.6. For any complete atomless Boolean algebra B, set S, and function
β : S → B such that {β(s) : s ∈ S} completely generates B, A = B×PP(S) is
completely independently generated by E = {⟨β(s), s∗⟩ : s ∈ S}.

Proof. We begin by showing that the atoms of A can be described as the set
{
∧
D : D ◁ E}. Note that {D : D ◁ E} = {Dw : w ⊆ S}, where Dw is defined

as w ∪ {−s : s ∈ S\w}. It thus suffices to show that
∧
Dw = ⟨⊥, {w}⟩, for all

w ⊆ S. We consider the two coordinates in turn.
First, working in the atomless algebra B: If w ⊆ S, then {π1(x) : x ∈ Dw}

includes some D ◁ G = {β(s) : s ∈ S}. By Lemma 4.5, for all x ∈ B,
∧
D ≤ x

or
∧
D ≤ −x. Since B is atomless, it follows that

∧
D = ⊥, and so

∧
{π1(x) :

x ∈ Dw} = ⊥, as required.
Second, working in the double powerset algebra PP(S): If w ⊆ S, then

D := {π2(x) : x ∈ Dw} ◁ ΓS . In particular,

D = {s∗ : s ∈ w} ∪ {−s∗ : s ∈ S\w}.

It is routine to verify that for all v ⊆ S, v ∈
⋂
D iff v = w. Thus

⋂
D = {w},

and so
∧
{π2(x) : x ∈ Dw} = {w}, as required.
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From this initial observation, we can immediately conclude that E is com-
pletely independent: for every D ◁ E,

∧
D is an atom, and so non-zero.

It is also easy to conclude from this observation that E completely generates
A: Let A′ be the smallest complete subalgebra of A including E. By the initial
observation, A′ contains every atom of A. Since every member of a powerset
algebra is a union (least upper bound) of some of its atoms, it follows that
⟨⊥, y⟩ ∈ A′, for all y ∈ PP(S). In particular, A′ contains ⟨⊥,⊤⟩, and so also
⟨β(s),⊥⟩, for all s ∈ S. Since G completely generates B, it follows that A′ also
contains ⟨x,⊥⟩, for all x ∈ B. Thus, A′ contains any ⟨x, y⟩ ∈ A, as required.

As in the case of ⟨2,CBA⟩-free generation, we can show that up to isomor-
phism, these are the only examples of complete independent generation:

Lemma 4.7. If E completely independently generates A, then there is a com-
plete atomless Boolean algebra B and an isomorphism f from A to B×PP(E)
such that {π1f(e) : e ∈ E} completely generates B and π2f(e) = e∗ for all
e ∈ E.

Proof. The proof follows the pattern of Lemma 4.3. Assume E completely inde-
pendently generates A. Let c be the least upper bound of the set of atoms of A,
b = −c, and B the relativization of A to b. As noted above, B is complete and
atomless. For every w ⊆ E, let Dw = w ∪ {−e : e ∈ E\w}. Define a function f
on A such that for all x ∈ A:

f(x) = ⟨x ∧ b, {w ⊆ E :
∧
Dw ≤ x}⟩

We show that B and f witness the claim.
First, we show that for every w ⊆ E,

∧
Dw is an atom of A. That

∧
Dw > ⊥

is guaranteed by the complete independence of E. As E completely generates
A, it therefore follows with Lemma 4.5 that Dw is an atom. The remainder of
the proof proceeds along the lines of the proof of Lemma 4.3.

Putting the last two lemmas together, we obtain the following characteriza-
tion of complete independent generation:

Theorem 4.8. E completely independently generates A just in case there is a
complete atomless Boolean algebra B and an isomorphism f from A to B ×
PP(E) such that {π1f(e) : e ∈ E} completely generates B and π2f(e) = e∗ for
all e ∈ E.

Proof. The left to right direction is established in Lemma 4.7. The right to
left direction follows from Lemma 4.6 and the fact that complete independent
generation is invariant under isomorphism.

One obvious consequence of Theorems 4.4 and 4.8 is that by moving from
arbitrary Boolean algebras to complete Boolean algebras, we include not only
the finite double powerset algebras, but also infinite double powerset algebras. It
is worth noting that in this case, the relevant generators need not be determined
uniquely up to isomorphism. Recall how we noted that for any cardinality κ,
there is a Boolean algebra A which is independently generated by a set E of
cardinality κ. Furthermore, in this case, A and E determine each other uniquely,
up to isomorphism: A is uniquely determined, up to isomorphism, by the car-
dinality of E, and the cardinality of E is uniquely determined by the structure
– indeed, by the cardinality – of A. In the case of double powerset algebras, it
is obvious that the cardinality of the starting set S, which is identical to the
cardinality of the set of canonical generators ΓS , determines PP(S) uniquely,
up to isomorphism. If S is finite, its cardinality is also determined by the car-
dinality of PP(S), since there is a unique number n such that 22

n

= |PP(S)|.
This need not hold if S is infinite, since it is consistent with ZFC that there

16



are distinct cardinals κ, λ such that 2κ = 2λ. (This consistency claim can be
obtained using forcing, the standard technique for independence proofs in set
theory. For example, it follows as a corollary of Easton’s theorem; see Jech
(2002, p. 232, Theorem 15.18).) In this case, PP(κ) is isomorphic to PP(λ)
while Γκ = κ ̸= λ = Γλ. In such a case, there is a double powerset algebra which
is, e.g., completely independently generated by two sets of distinct cardinalities.
Thus, the relevant regimentations of LA admitting all double powerset algebras
need not even pin down the elementary propositions up to isomorphism.

Another obvious consequence of Theorems 4.4 and 4.8 is that neither of the
relevant constraints requires the generated algebra to be a double powerset alge-
bra. In the case of ⟨2,CBA⟩-free generation, it is perhaps not all that surprising
that some complete Boolean algebra which is not isomorphic to a double power-
set algebra is ⟨2,CBA⟩-freely generated by one of its sets. After all, ⟨2,CBA⟩-free
generation only captures the idea that the truth-values of all propositions are
uniquely determined by the truth-values of the elementary propositions. The
matter is perhaps more surprising in the case of complete independent genera-
tion. Along lines discussed in the proof of Lemma 4.7, if E completely indepen-
dently generates A, then the atoms of A correspond uniquely to the subsets of
E, via the greatest lower bounds of complete descriptions in terms of E. This
is as one might expect. The (arbitrary) disjunctions of atoms naturally form
a double powerset structure. However, we have seen that it is consistent with
complete independent generation that further elements are generated: A might
be the product of an atomless algebra B with a double powerset algebra PP(S).
In this case, every generating element consists of a component of the atomless
algebra and a component of the double powerset algebra. When we form the
atoms as greatest lower bounds of complete descriptions in terms of E, the
atomless components disappear. Thus, once we have formed the disjunction of
all atoms, we can use this to access the atomless component of the generating
elements, and so generate the rest of the algebra. Thus, aside from the expected

double powerset structure containing 22
|E|

elements, complete independent gen-
eration allows the generation of further, maybe unexpected, propositions, based
on the atomless factor B. It is worth noting that with the Gaifman-Hales the-
orem, it follows immediately that this atomless factor may be arbitrarily large:
If E is countably infinite, the corresponding double powerset algebra will have

cardinality 22
|E|

= 22
ℵ0

= ℶ2. But since there are arbitrarily large complete
Boolean algebras completely generated by a countable set, the atomless factor
may be arbitrarily large. The unexpected atomless factor may therefore dwarf
the expected double powerset factor by an arbitrarily large degree.

So, in the case of ⟨2,CBA⟩-free and completely independent generation at
least, the rapprochement with the double powerset picture is incomplete. Natu-
rally, one can close the gap by making further assumptions, such as atomicity: it
follows immediately from Theorem 4.8 that a complete atomic Boolean algebra
A is, e.g., completely independently generated by a set E just in case there is
an isomorphism from A to PP(E) which maps every e ∈ E to e∗. Thus, to
arrive at the double powerset picture, it also suffices to assume, in addition to
completely independently generated, that the disjunction of the conjunctions of
complete descriptions in terms of E is the top element, i.e.:∨

D◁E

∧
D = ⊤

Such additional assumptions are not obviously part of LA, the principle that
every proposition is a truth-functional combination of elementary propositions,
although they may be part of a more general logical atomist picture (cf. LPA,
4.46, 4.461).
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5 Partial Characterizations

For an arbitrary complete Boolean algebra A, the notions of ⟨A,CBA⟩-free and
⟨csub(A),CBA⟩-free generation are much harder to understand, and we have
only obtained partial results characterizing them and relating them to three
notions discussed in the previous section. Our main results are summarized in
Figure 1. There, indexed arrows indicate the strongest relationship we have

been able to establish. For example, X
⊆ // Y indicates that we have been

able to establish that X entails Y , but that we haven’t been able to settle
whether Y entails X. Complete independent generation is abbreviated as CIG,
and ⟨T,CBA⟩-free generation is abbreviated as ⟨T,CBA⟩, for the various choices
of T.

CIG
⊊ //

⊈

��

⟨2,CBA⟩

⟨CBA,CBA⟩ ⊊ // ⟨csub(A),CBA⟩

⊊
77

⊆ ''
⟨A,CBA⟩

Figure 1: Entailments among complete notions of generation.

5.1 Basic Observations

We begin with the relationship between ⟨CBA,CBA⟩-free generation and ⟨csub(A),CBA⟩-
free generation. That the former entails the latter is immediate. That the en-
tailment cannot be reversed follows by Theorem 4.1 and the following result:

Proposition 5.1. For every set S, the double powerset algebra PP(S) is ⟨csub(PP(S)),CBA⟩-
freely generated by the set of canonical generators ΓS.

Proof. Consider any complete subalgebra B of A = PP(S), and function f :

ΓS → B. Let f̂ : A→ A such that for all x ∈ A:

f̂(x) = {w ⊆ S : {s ∈ S : w ∈ f(s∗)} ∈ x}

It is straightforward to show that f̂ is a complete homomorphism from A to A
which extends f .

Recall that ΓS completely generates A. By inductions on the generation of
A (as in the proof of Lemma 4.5), it follows first that im(f̂) ⊆ B whence f̂ is

a complete homomorphism from A to B, and second that f̂ is the only such
homomorphism extending f .

It is immediate that ⟨csub(A),CBA⟩-free generation entails ⟨A,CBA⟩-free
generation. That ⟨csub(A),CBA⟩-free generation entails complete independent
generation is shown in the next result:

Proposition 5.2. If E ⟨csub(A),CBA⟩-freely generates A, then E completely
independently generates A.

Proof. We first show that E is completely independent. This can in fact be
established from the weaker assumption that E ⟨T,CBA⟩-freely generates A, for
some class T of complete Boolean algebras containing a non-trivial algebra B.
Consider any D ◁ E. Let f : E → B be the function such that f(e) = ⊤ if
e ∈ D, and f(e) = ⊥ otherwise. By ⟨T,CBA⟩-free generation, f extends to a

complete homomorphism f̂ . Then f̂(
∧
D) = ⊤, whence

∧
D > ⊥.
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To show that E completely generates A, let B the smallest subalgebra of
A including E. We show that B = A. Let ı be the identity map on E. By
⟨csub(A),CBA⟩-free generation, ı extends to a complete homomorphism ı̂ from
A to B. ı̂ is also a complete homomorphism from A to A extending ı, so by
⟨csub(A),CBA⟩-free generation, ı̂ is the only such homomorphism. But the iden-
tity map on A is such a homomorphism, so ı̂ is the identity map on A. So
B = A.

It follows immediately from Theorems 4.8 and 4.4 that complete independent
generation entails ⟨2,CBA⟩-free generation, but not vice versa. Moreover, there
are complete Boolean algebras ⟨2,CBA⟩-freely generated by some set, and not
completely independently generated by any set:

Proposition 5.3. Some complete Boolean algebra is ⟨2,CBA⟩-freely generated
by a set of its elements, while not being completely independently generated by
any set of its elements.

Proof. We can derive the claim from Theorems 4.4 and 4.8 together with the
fact that for any cardinality κ, there are complete Boolean algebras all of whose
completely generating sets are of cardinality ≥ κ. For example, the completion
of the free Boolean algebra with κ many generators is only completely generated
by sets of size≥ κ; see Koppelberg (1989, p. 211, Ex. 2). LetB be the completion
of the free Boolean algebra with ℶ1 = 2ℵ0 generators, and A = B × PP(ℵ0).
By Theorem 4.4, A is ⟨2,CBA⟩-freely generated. Assume for contraction that it
is completely independently generated by a set E. By Theorem 4.8, E must be
at least of size ℶ1. But then PP(ℵ0) must be isomorphic to PP(S) for some
set S of cardinality ℶ1, which is impossible.

It only remains to show that complete independent generation does not entail
⟨A,CBA⟩-free generation. Since we have seen that ⟨csub(A),CBA⟩-free genera-
tion entails both complete independent generation and ⟨A,CBA⟩-free generation,
it immediately follows that complete independent generation does not entail
⟨csub(A),CBA⟩-free generation. Moreover, we can show not only that some set
which completely independently generates an algebra fails to ⟨A,CBA⟩-freely
generate it, but more specifically that some algebra which is completely inde-
pendently generated by a set of its elements is not ⟨A,CBA⟩-freely generated by
any set of its elements. However, establishing this relationship between complete
independent generation and ⟨A,CBA⟩-free generation is more complicated. We
therefore devote a separate section to it.

5.2 Complete Independent Generation without ⟨A,CBA⟩-
Free Generation

For the result of this section, we need a number of further notions for a Boolean
algebra A. First, elements x, y ∈ A are disjoint if x ∧ y = ⊥. An antichain of
a A is a set X ⊆ A which is pairwise disjoint, i.e., such that any two distinct
elements of X are disjoint. A satisfies the countable chain condition if every
antichain of A is countable. Finally, A is homogeneous if for every x ∈ A, the
relativization of A to x is isomorphic to A itself. To these standard notions, we
add two non-standard notions which will be helpful as well.

Definition 5.4. Let A be a Boolean algebra and G ⊆ A.

G weakly completely independent if every G0 ⊆ G such that |G\G0| = |G| is
completely independent.

G divisible if there is some non-zero x ∈ A such that for all g ∈ G, either
x ≤ g or x ≤ −g.
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Theorem 4.8 tells us that to construct an algebra which is completely inde-
pendently generated, we can start, without loss of generality, with a product
A = B×PP(S), with S of at least the size of some set of complete generators
for B. We can easily satisfy this cardinality constraint by letting S = B. The
challenge is now to ensure that ⟨A,CBA⟩-free generation fails, for any set E ⊆ A.
It turns out that this can be done by choosing B to be infinite, homogeneous,
and satisfying the countable chain condition; such algebras are well-known to
exist.

To show that ⟨A,CBA⟩-free generation fails in such a case, we establish a
number of lemmas. We begin with some relatively basic observations concerning
the atomless factor B. Since we ultimately only care about infinite algebras, we
restrict many results to these cases for simplicity. (Note that the only finite
homogeneous Boolean algebras are 1 and 2.)

Lemma 5.5. Let B be an infinite atomless complete Boolean algebra.

(i) If B is completely generated by a set G ⊆ B, then
∧
D = ⊥ for every

D ◁ G.

(ii) If B satisfies the countable chain condition, then every weakly completely
independent set G ⊆ B is finite.

Proof. Since B is atomless, (i) follows by Lemma 4.5. For (ii), assume that B
has a weakly completely independent set G ⊆ B which is infinite. Then there is
an infinite set G0 ⊆ G such that |G\G0| = |G|. G0 is completely independent,
whence {

∧
D : D ◁ G0} is pairwise disjoint, and of cardinality 2|G0|, which is

uncountable. So B does not satisfy the countable chain condition.

Next, we note that if E ⟨A,CBA⟩-freely generates A, then its complete de-
scriptions conjoin to the atoms of A:

Lemma 5.6. Let B and C be infinite complete Boolean algebras, with B being
atomless and C being atomic. If A = B × C is ⟨A,CBA⟩-freely generated by a
set E ⊆ A, then {

∧
D : D ◁ E} is the set of atoms of A.

Proof. To show that
∧
D is an atom, for any D ◁ E, note first that

∧
D > ⊥:

Let f : E → {⊥A,⊤A} be the function such that f(e) = ⊤A iff e ∈ D. By

⟨A,CBA⟩-free generation, f extends to f̂ . Consider any d ∈ D: If d ∈ E, then

f̂(d) = ⊤A. If d /∈ E, then −d ∈ E and −d /∈ D; so f(−d) = ⊥A whence

f̂(d) = ⊤A. So f̂(
∧
D) = ⊤A, whence

∧
D > ⊥A.

To complete the argument for
∧
D being an atom, note that π1(

∧
D) =

⊥B: π1(
∧
D) is

∧
{π1(d) : d ∈ D}, and since {π1(d) : d ∈ D} ◁ G and G

completely generates B, it follows with Lemma 5.5 (i) that π1(
∧
D) = ⊥B. So∧

D = ⟨⊥B, c⟩ for some ⊥C < c ∈ C. Thus, if
∧
D is not an atom, there are

distinct atoms a0, a1 of A such that a1, a2 <
∧
D. For each atom, there is a

corresponding complete homomorphism from A to {⊥A,⊤A}; they both map∧
D to ⊤A, and so agree on E, contradicting ⟨A,CBA⟩-free generation.
Conversely, for every atom a of A, there is a corresponding complete homo-

morphism A to {⊥A,⊤A}, and so some D ◁ E such that a ≤
∧
D. As just

shown,
∧
D is an atom, so a must be

∧
D. Thus every atom is

∧
D, for some

D ◁ E. So {
∧
D : D ◁ E} is the set of atoms of A.

The next lemma is central; it shows that in the envisaged algebra A, the
first coordinates of any ⟨A,CBA⟩-freely generating set must be divisible:

Lemma 5.7. Let B and C be infinite complete Boolean algebras, with B being
atomless and satisfying the countable chain condition, and C being atomic. If
A = B× C is ⟨A,CBA⟩-freely generated by a set E ⊆ A, then {π1(e) : e ∈ E} is
divisible.
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Proof. Assume for contradiction that A is ⟨A,CBA⟩-freely generated by E and
G = {π1(e) : e ∈ E} is not divisible. We derive of a contradiction from this
assumption in four steps.

In the first step, we identify a particular function f : E → A. Every
finite subset of a Boolean algebra is divisible, so G is infinite. It follows by
Lemma 5.5 (ii) that G is not weakly completely independent. So there is some
G0 ⊆ G which is not completely independent such that |G\G0| = |G|. As G0 is
not completely independent, there is some D0 ◁ G0 such that

∧
D0 = ⊥B. Let

f0 be a function from G to B such that f0(g) = ⊤B if g ∈ G0∩D0, f0(g) = ⊥B

if g ∈ G0\D0, and G ⊆ im(f0). Such a function exists for cardinality reasons.
Define f : E → A as ⟨b, c⟩ 7→ ⟨f0(b), c⟩. By ⟨A,CBA⟩-free generation, there is a

complete homomorphism f̂ from A to A extending f .
In the second step, we show that for every D ◁ E, f̂(

∧
D) =

∧
D. So

consider any D ◁ E. We first describe
∧
D: As shown in Lemma 5.6,

∧
D is

an atom, whence
∧
D = ⟨⊥B, π2

∧
D⟩. It thus suffices to show that the two

coordinates of f̂(
∧
D) are ⊥B and π2(

∧
D). We consider them in turn.

First coordinate: G ⊆ im(f0), so for every g ∈ G, there is an e ∈ E such

that π1f̂(e) = g. If e ∈ D, then π1
∧
f̂(D) ≤ g. If e /∈ D, then −e ∈ D; so

π1f̂(−e) = −g, whence π1f̂(
∧
D) ≤ −g. It follows that there is an X ◁ G such

that π1f̂(
∧
D) ≤

∧
X. By Lemma 5.5 (i),

∧
X = ⊥B, so π1f̂(

∧
D) = ⊥B.

Second coordinate: Consider any ⟨b, c⟩ ∈ D. If ⟨b, c⟩ ∈ E, then π2f̂(⟨b, c⟩) =
c. If ⟨b, c⟩ /∈ E, then ⟨−b,−c⟩ ∈ E. So f̂(⟨b, c⟩) = −f̂(⟨−b,−c⟩) = ⟨f0(−b), c⟩. So
π2f̂(⟨b, c⟩) = c. So for all d ∈ D, π2f̂(d) = π2(d), whence π2f̂(

∧
D) = π2(

∧
D).

In the third step, we show that for all g ∈ G, f̂(⟨g,⊥C⟩) = ⟨f0(g),⊥C⟩ and
f̂(⟨−g,⊥C⟩) = ⟨−f0(g),⊥C⟩. Since ⟨⊥B,⊤C⟩ is the disjunction of atoms of A,
Lemma 5.6 entails that ⟨⊥B,⊤C⟩ =

∨
{
∧
D : D ◁ E}. With the claim estab-

lished in the second step, it follows that f̂ maps ⟨⊥B,⊤C⟩ to itself; consequently,
it also maps ⟨⊤B,⊥C⟩ to itself.

Consider first any ⟨b, c⟩ ∈ E. Since ⟨b,⊥C⟩ = ⟨b, c⟩ ∧ ⟨⊤B,⊥C⟩, it follows:

f̂(⟨b,⊥C⟩) = f̂(⟨b, c⟩) ∧ f̂(⟨⊤B,⊥C⟩) = ⟨f0(b), c⟩ ∧ ⟨⊤B,⊥C⟩ = ⟨f0(b),⊥C⟩

Similarly:

f̂(⟨b,⊤C⟩) = f̂(⟨b, c⟩) ∨ f̂(⟨⊥B,⊤C⟩) = ⟨f0(b), c⟩ ∨ ⟨⊥B,⊤C⟩ = ⟨f0(b),⊤C⟩

Thus f̂(⟨−b,⊥C⟩) = −f̂(⟨b,⊤C⟩) = −⟨f0(b),⊤C⟩ = ⟨−f0(b),⊥C⟩.
In the final and fourth step, the assumption that f̂ is a complete homo-

morphism will be contradicted. Since
∧
D0 = ⊥B,

∧
{⟨d,⊥C⟩ : d ∈ D0} = ⊥A.

However, using the observations established in the third step:

f̂(
∧

{⟨d,⊥C⟩ : d ∈ D0}) = (
∧

{f̂⟨d,⊥C⟩) : d ∈ D0}) = ⟨⊤B,⊥C⟩

So f̂(⊥A) = ⟨⊤B,⊥C⟩, which contradicts f̂ being a homomorphism.

With this lemma, we can show that the envisaged algebra A indeed fails to
be ⟨A,CBA⟩-freely generated:

Proposition 5.8. Let B and C be infinite complete Boolean algebras, with B
being homogeneous and satisfying the countable chain condition, and C being
atomic. Then A = B× C is not ⟨A,CBA⟩-freely generated by any set.

Proof. Assume for contradiction that there is a set E ⊆ A which ⟨A,CBA⟩-
freely generates A. Since B is infinite and homogeneous, it is atomless. By
Lemma 5.7, G = {π1(e) : e ∈ E} is divisible. Let y ∈ B be a witness of this.
As B is atomless, there is a non-zero x < y. Let x′ = y ∧ −x. Homogeneity is
preserved under relativization, soB relativized to y is infinite and homogeneous.
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By homogeneity, this relativized algebra has an automorphism f mapping x to
x′; see Koppelberg (1989, p. 135, Prop. 9.13). Define a function g on B such
that for all z ∈ B:

g(z) = f(z ∧ y) ∨ (z ∧ −y)

It is routine to confirm that g is an automorphism of B. (One way to see
this is to note that if f and f ′ are automorphisms of B relativized to y and
−y, respectively, then z 7→ f(z ∧ y) ∨ f ′(z ∧ −y) is an automorphism of B.)
Similarly, it is routine to derive that g maps every element of G to itself from
the fact that y witnesses the divisibility of G.

Finally, let ι be the function mapping every element of E to itself, and ι1 the
function mapping every element of A to itself. ι1 is obviously an automorphism
of A extending ι. Let ι2 be the function mapping every ⟨b, c⟩ ∈ A to:

ι2(⟨b, c⟩) = ⟨g(b), c⟩

Using the fact that g is an automorphism of B, it is routine to show that ι2 is
an automorphism of A. Further, since g maps every element of G to itself, ι2
maps every element of E to itself. So, both ι1 and ι2 are automorphisms – and
so complete endomorphisms – of A, and both extend ι. But since g does not
map every element of B to itself, ι2 ̸= ι1. This contradicts the uniqueness of ι̂
required by ⟨A,CBA⟩-free generation.

Theorem 5.9. Some complete Boolean algebra is completely independently gen-
erated by a set of elements, while not being ⟨A,CBA⟩-freely generated by any set
of elements.

Proof. For any infinite set I, consider the partial order of finite partial functions
from I to 2, ordered by reverse subset inclusion. The corresponding partial order
topology determines a complete Boolean algebra B. This algebra is infinite and
homogeneous, and so atomless, and satisfies the countable chain condition. The
construction is well-known, so we omit the details; see Koppelberg (1989, p. 181
& p. 64, Ex. 6) and Bell (2005, p. 50). By Theorem 4.8, A = B × PP(B) is
completely independently generated by a set of elements. But by Proposition 5.8,
A is not ⟨A,CBA⟩-freely generated by any set of elements.

5.3 Open Questions and Further Results

We have now established all the relationships recorded in Figure 1. A number
of questions remain open.

First, we have seen that any double powerset algebra A is ⟨csub(A),CBA⟩-
freely generated by its canonical generators. We do not know whether these are
the only examples, up to isomorphism:

Open Question 5.10. Is every complete Boolean algebra A which is ⟨csub(A),CBA⟩-
freely generated by a set of its elements isomorphic to a double powerset algebra?

Second, as noted above, it is immediate that ⟨csub(A),CBA⟩-free generation
entails ⟨A,CBA⟩-free generation. We do not know whether the converse is the
case as well:

Open Question 5.11. Is every complete Boolean algebra A which is ⟨A,CBA⟩-
freely generated by a set of its elements also ⟨csub(A),CBA⟩-freely generated by
this set?

What we do know is that this question has a negative answer if there are
complete Boolean algebras with only one complete endomorphism. Of course,
every algebra has at least one complete endomorphism, the function mapping
every element to itself. Call a function non-trivial if it does not map every el-
ement on which it is defined to itself. We can show that an algebra A without
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non-trivial complete endomorphisms is ⟨A,CBA⟩-freely generated by a set of its
elements but not ⟨csub(A),CBA⟩-freely generated by any set of its elements.
Indeed, we can show that such an algebra is not completely independently gen-
erated by any set of its elements; since ⟨csub(A),CBA⟩-free generation entails
complete independent generation but not vice versa, this is a strictly stronger
condition.

Proposition 5.12. Any infinite complete Boolean algebra A without non-trivial
complete endomorphisms has a set of elements which ⟨A,CBA⟩-freely generates
it, but no set of elements which completely independently generates it.

Proof. Let A be a complete Boolean algebra without non-trivial complete endo-
morphisms. ∅ ⟨A,CBA⟩-freely generates A: There is a single function f : ∅ → B,
which extends to a unique complete endomorphism extending f , namely the
identity function.

Assume for contradiction that A is completely independently generated by
some set E ⊆ A. Since A is infinite, E must be infinite as well. By Theorem 4.8,
A is isomorphic to the product of an atomless complete Boolean algebra with
PP(E). Thus A contains distinct atoms a, a′. However, for any two atoms of a
powerset algebra, there is an automorphism f which interchanges them. Thus,
A has a non-trivial automorphism ⟨b, c⟩ → ⟨b, f(c)⟩, which is a complete endo-
morphism. This contradicts the assumption that A has no non-trivial complete
endomorphism.

To our knowledge, the question whether there are complete Boolean algebras
without non-trivial complete endomorphisms has not be considered in the liter-
ature. However, various related conditions have been considered, and shown to
be instantiated. For example, a Boolean algebra is called rigid if it has no non-
trivial automorphisms. Any Boolean algebra with more than two elements has
non-trivial endomorphisms, but there are certain Boolean algebras which have
very few endomorphisms; these are called endo-rigid. (We omit the definition
of endo-rigidity, which is complicated to state.) Endo-rigid Boolean algebras
are rigid. Various complete Boolean algebras have been shown to be rigid, and
certain Boolean algebras have been shown to be endo-rigid; see Bekkali and Bon-
net (1989) and Monk (1989). These results give us some hope that our related
question has a positive answer as well:

Open Question 5.13. Is there a complete Booolean algebra without non-trivial
complete endomorphisms?

Finally, we have seen in Theorem 5.9 that there are algebras A completely
independently generated by some set of elements but not ⟨A,CBA⟩-freely gen-
erated by any set of elements. More generally, Proposition 5.8 describes a class
of algebras A not ⟨A,CBA⟩-freely generated by any set of elements. A simpler
argument, in some ways similar, gives us many more examples of algebras A
not ⟨A,CBA⟩-freely generated by any set of elements:

Proposition 5.14. No infinite homogeneous complete Boolean algebra A is
⟨A,CBA⟩-freely generated by any set of elements.

Proof. Consider any infinite homogeneous complete Boolean algebra A and
E ⊆ A. Assume for contradiction that E ⟨A,CBA⟩-freely generates A. Let ι
be the function mapping every element of E to itself, and ι1 the function map-
ping every element of A to itself. ι1 is an automorphism extending ι. It suffices
to produce a second automorphism ι2 which extends ι: automorphisms are com-
plete endomorphisms, so the distinctness of ι1 and ι2 contradicts the uniqueness
of ι̂ required for E to ⟨A,CBA⟩-freely generate A. We distinguish two cases:

Assume first that
∧
E = ⊤. Then E ⊆ {⊤}. Since A is infinite and homo-

geneous, it has a non-trivial automorphism ι2. Any automorphism maps ⊤ to
itself, so ι2 extends ι, as required.
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Assume now that
∧
E < ⊤. As noted in the proof of Proposition 5.2, it

follows from the assumption that E ⟨A,CBA⟩-freely generates A that E is com-
pletely independent. Consequently, ⊥ <

∧
E. Since A is homogeneous, it is

atomless. So, there is a non-zero e <
∧
E. Let b =

∧
E ∧ −e. By homogeneity,

there is an automorphism f of A restricted to
∧
E mapping e to b. f extends

to an automorphism ι2 of A, letting ι2(x) = f(x ∧
∧
E) ∨ (x ∧ −

∧
E) for all

x ∈ A. ι2 is non-trivial, but maps every element of E to itself, as required.

6 Conclusion

We began with LA, the principle that every proposition is a truth-functional
combination of elementary propositions. We noted that in the setting of arbi-
trary Boolean algebras (rather than the setting of complete Boolean algebras),
the natural algebraic ways of formalizing this principle all lead to the same no-
tion, of an independently (or, equivalently, freely) generated Boolean algebra
A. In the finite case, this gives us exactly the double powerset algebras, and
so matches how a number of authors have modeled logical atomism in Boolean
algebras. However, in the infinite case, free generation comes apart starkly from
the double powerset picture. One question we noted above was whether harmony
can be restored in the infinite domain once we move to complete Boolean alge-
bras, and include arbitrary conjunctions (greatest lower bounds) in the various
algebraic regimentations of LA.

To some extent, we have seen that this hope for a rapprochement is vindi-
cated: For any set S, the canonical generators ΓS ⟨csub(A),CBA⟩-freely generate
the double powerset algebra A := PP(S), and it follows from this that they also
complete independently, ⟨A,CBA⟩-freely, and ⟨2,CBA⟩-freely generate this al-
gebra. However, we have also seen some ways in which these conditions don’t
exactly vindicate the double powerset picture. First, the remaining condition of
⟨CBA,CBA⟩-free generation does not fall in line, as ΓS does not ⟨CBA,CBA⟩-
freely generate PP(S) when S is infinite. Second, there are cases of both com-
plete independent generation and ⟨2,CBA⟩-free generation in which the algebra
is not a double powerset algebra.

Formal regimentation in Boolean algebras thus reveals that the informal
idea captured in LA can be made precise in a number of different ways which
lead to substantially different results. This applies to the various options in the
context of Boolean algebras considered here. But it also applies to various ways
of capturing LA which do not appeal to Boolean algebras. As noted above, our
own preferred way or regimenting talk of propositions is of this kind, namely a
regimentation in higher-order logic. We hope to consider this in more detail in
future work.
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